The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

08/01/07
The Eigenvalue Problem

- Given a square matrix A, find values λ_i and vectors v_i such that
 \[Av_i = \lambda_i v_i \]
 - Values λ_i are called *eigenvalues*
 - Vectors v_i are called *eigenvectors*
Quantum Mechanics

- The Time-Independent Schrödinger equation

\[H\psi = E\psi \]

where \(H \) is the Hamiltonian operator, \(\psi \) is a wave function, and \(E \) is the energy in the system.

- This can be simplified so that \(H \) can be represented as a matrix and \(\psi \) as a vector.

- Eigenvalues correspond to energy levels of the system; the eigenvectors represent the corresponding wave-functions.
Graph Theory

- Given a graph G, the *centrality* of a vertex is a measure of how “important” a vertex is to a graph.

- The importance of a node is proportional to the sum of the importance of the nodes adjacent to it.

- Centrality is found by determining the eigenvector associated with the largest eigenvalue.

- This measure forms the basis for Google’s PageRank™ algorithm.
The Lanczos Algorithm

- Reduces a large, complicated eigenvalue problem into a smaller, simpler one
- Approximates the eigenvalues of a matrix
- Finds the smallest and largest eigenvalues fastest
A is the matrix, q_1 is a random vector with $|q_1| = 1$

$q_0 = 0, \beta_1 = 0$

for $i = 1$ to m:

$u = Aq_i - \beta_i q_{i-1}$

$\alpha_i = u \cdot q_i$

$u = u - \alpha_i q_i$

$\beta_{i+1} = |u|$

$q_{i+1} = u / \beta_{i+1}$

Then find the eigenvalues of

$$T = \begin{pmatrix}
\alpha_1 & \beta_2 & & \\
\beta_2 & \alpha_2 & \beta_3 & \\
& \ddots & \ddots & \\
& & \ddots & \alpha_{m-1} & \beta_m \\
& & & \beta_m & \alpha_m
\end{pmatrix}$$
The Orthogonality Problem

- Each q_i should be orthogonal to all other q vectors.

- Due to limited precision when storing vectors, new q vectors slowly become less orthogonal.
Reorthogonalization

- Periodically reorthogonalize the current q vector against all previous q vectors.
- Takes a lot of time - is only done when necessary
- Use simple recurrence relations to estimate level of nonorthogonality - reorthogonalize when this level gets too large.
- In practice, reorthogonalize about every 10-15 iterations.
Implementation Notes

- Test the eigenvalues every 10 loops (adjustable).
- Test for convergence by testing the sum of the smallest (or largest) eigenvalues.
- The eigenvectors of A can be calculated as

$$v_i = \begin{pmatrix} q_0 & \ldots & q_n \end{pmatrix} w_i$$

where w_i is an eigenvector of T.
Performance

- Performance is largely determined by disk speed.

 Example: On a matrix of size $n = 108,384$, performing 1000 iterations took 4437 seconds, but only 269 seconds (6%) were spent performing computations; the rest were spent waiting for the disk.

- The time spent waiting for disk should decrease with larger vectors.
 - For a given operation, computing time increases linearly with vector size, while load time is nearly constant.
Future Directions

Goal: Further increase speed and scale of calculations

- Better handling of vector storage
 - Keep vectors in memory longer

- Store fewer vectors
 - Faster to regenerate vectors than load them

- Parallelize for multiple-processor machines
Questions?