α–β–γ transformations in \(\text{Mg}_2\text{SiO}_4 \) in Earth's transition zone

Yonggang G. Yu a,⁎, Zhongqing Wu b, Renata M. Wentzcovitch b

a Department of Chemistry, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
b Department of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA

1. Introduction

Olivine, α-, wadsleyite, β-, and ringwoodite, γ-(Mg,Fe)\(_2\)SiO\(_4\), are the most abundant minerals of the upper mantle and transition zone. A phase transformation between the α and β polymorphs (Ringwood and Major, 1970) is generally believed to cause the major discontinuity in density and velocities at 410-km depth defining the boundary between the upper mantle and the transition zone in Earth. This boundary is relatively sharp, i.e., ~5 km wide, and there is much consensus about its origin and the magnitude of the discontinuities there (for a review see Aage, 1998). Laboratory measurements of acoustic wave velocities in individual phases (Li and Liebermann, 2007) and simultaneous calculations of thermodynamic equilibrium in mantle aggregates (Ita and Stixrude, 1992) support the view that an upper mantle with approximately pyrolite composition, i.e. ~60 vol.% olivine can produce the 410-km discontinuity. It has been known for a long time that the β to γ transition in Mg\(_2\)SiO\(_4\) could contribute to the high velocity gradient in the mid-transition zone region; another expected contribution to this high gradient is produced by the (Mg, Fe, Ca)gt → (Mg, Fe)gt + Ca-perovskite reaction. Since then there has been a rich and extensive literature in mineral physics trying to elucidate phase equilibria conditions and phase transformations in the olivine system (e.g., Suito, 1977; Yagi et al., 1979; Akaogi et al., 1984; Price et al., 1987; Akaogi et al., 1989; Katsura and Ito, 1989; Chopelas, 1991; Stixrude and Bukowinski, 1993; Morishima et al., 1994; Suzuki et al., 2000; Inoue et al., 2006) and in the garnet-form system (e.g., Irifune et al., 1989; Canil, 1994; Koito et al., 2000; Weidner and Wang, 2000) to better understand seismic observations in the mid-transition zone. There are also controversial seismic observations of fine structure features around 520-km depth. Using long or short period data some seismic studies found global (e.g., Wiggins and Helmberger, 1973; Shearer, 1990; Revenaugh and Jordan, 1991) or regional (e.g., Ryberg et al., 1997) evidence for the 520-km discontinuity, but others did not find convincing evidence (e.g., Jones et al., 1992) for this discontinuity. Some other studies using underside reflection data in the mantle did not find the 520-km discontinuity universally detectable (Gossler and Kind, 1996; Gu et al., 1998). Some seismic study also reported the 520-km discontinuity splits into two discontinuities at 500- and 560-km (Deuss and Woodhouse, 2001).

Abstract

Phase relations in α–β–γ \(\text{Mg}_2\text{SiO}_4 \) have been investigated by first principles quasi-harmonic free energy computations. The computed phase boundaries obtained using the local density approximation (LDA) and the generalized gradient approximation (GGA) bracket the experimental ones, with LDA (GGA) calculations giving the lowest (highest) bound, while the Clapeyron slopes are in good agreement with the experimentally determined ones. This is the same trend displayed by previous similar computations. Further analyses reveal that despite the uncertainties in phase boundary determination, the calculated discontinuities in density, bulk modulus, and bulk sound velocity are quite insensitive to pressure and have small uncertainties and useful accuracy to discriminate potential sources of discontinuities in the mantle. We verify that ~3% density discontinuity at 410-km depth can be produced primarily by the α to β transition in an aggregate with pyrolite composition, i.e. ~60 vol.% of Mg\(_2\)SiO\(_4\). However, the 1.3–2.9% density discontinuity observed in some places at 520-km depth cannot be accounted for solely by the β to γ transition but also requires changes in the coexisting pyroxene/garnet/Ca-perovskite system.
et al., 2007), however they can still provide useful insights. In this paper, we investigate by first principles the \(\alpha - \beta - \gamma\) sequence of transformations in iron-free MgSiO\(_3\) and present subtle details of property changes across these transformations. We then address the mineralogical origin of the 410-km and 520-km discontinuities in light of these results.

2. Computational details

Complete thermodynamic calculations in iron-free olivine, wadsleyite, and ringwoodite have been performed using the plane-wave pseudopotential method in conjunction with the quasi-harmonic approximation (QHA) (Yu and Wentzcovitch, 2006; Li et al., 2007; Wu and Wentzcovitch, 2007). Details about the pseudopotentials’ parameters and experimental data on these minerals are given in those papers and references therein. Very encouraging agreement with experimental measurements in thermodynamic properties at relevant mantle \(P - T\)s has been reported for each phase. Differences between calculations and experiments were shown to be less than 2% for Raman and IR frequencies, 0.3% for volume, 2% for thermal expansivity, 0.5% for adiabatic bulk moduli, and 4% for temperature derivative of bulk moduli at upper mantle conditions. Those previous LDA studies on \(\alpha - \beta - \gamma\) and MgSiO\(_3\) have chosen difference k-point sampling in static self-consistent calculations, i.e., \(2 \times 2 \times 2\) (1 point), \(2 \times 2 \times 2\) (4 points), and \(4 \times 4 \times 4\) (10 points), with \(1/2 1/2 1/2\) shift from the origin. To ensure accurate static transition pressure, commensurate and fully converged k-point sampling and a sufficient k-point sampling of the first Brillouin zone was used in the Brillouin zone of these calculations. Therefore, we refined those static calculations using an \(E_{\text{cell}}\) of 70 Ry and denser k-point meshes of \(4 \times 2 \times 4\) (16 points), \(4 \times 4 \times 4\) (17 points), and \(4 \times 4 \times 4\) (10 points) with \(1/2 1/2 1/2\) shift from the \(\Gamma\)-point (Monkhorst and Pack, 1976) for \(\alpha - \beta\), \(\beta - \gamma\), and \(\gamma\) phases, respectively. The final energy convergence with respect to \(E_{\text{cell}}\) and k-point mesh was estimated to be within \(2.5 \times 10^{-4}\) Ry per formula unit. All structures were well optimized (Wentzcovitch, 1991) until the net forces on all ions were less than \(5 \times 10^{-5}\) Ry/Bohr and the stress less than \(10^{-5}\) Ry/Bohr\(^3\). Full phonon dispersion in the first Brillouin zone including the vibrational density of states (VDOS) was calculated by the density functional perturbation theory (Baroni et al., 2001).

Within the QHA, the Helmholtz free energy is expressed as

\[
F(V, T) = U_0(V) + \frac{1}{2} \sum_{\mathbf{q} \lambda} \hbar \omega_\lambda(\mathbf{q}, V) + k_B T \sum_{\mathbf{q} \lambda} \ln[1 - \exp(-\hbar \omega_\lambda(\mathbf{q}, V)/k_B T)],
\]

in which \(U_0(V)\) is the static DFT internal energy at volume \(V\) and \(\omega(\mathbf{q}, V)\) represents the \(j\)th phonon frequency with wave number \(\mathbf{q}\) in the Brillouin zone. The second and third terms in Eq. (1) represent lattice vibrational zero point motion and thermal excitation energies respectively. Once VDOS was calculated at several volumes we obtained the Helmholtz free energy \((F)\) at these volumes \((V)\) in a fine temperature \((T)\) grid. Then a fourth order finite strain equation of state was fitted at each \(T\) yielding \(F\) on a \(V - T\) grid. Using the finite difference method all thermodynamic properties, including the Gibbs free energy \((G)\), were derived numerically from \(F\) on this \(V - T\) grid and later on were inverted into a pressure–temperature \((P - T)\) grid with spacings of 0.1 GPa and 10 K. Besides, any point inside this grid could be interpolated whenever needed. Finally the phase boundary was found by comparing \(G(P,T)\) of two different phases.

Our calculation shows that static energy convergence with respect to k-point sampling was insufficient in a previous study of forsterite by Li et al. (2007): We find that changing k-point mesh from \(2 \times 2 \times 2\) to \(4 \times 4 \times 4\), both with \(1/2 1/2 1/2\) shift from origin, increases the LDA static energy by \(- 10\) meV/atom. The insufficient k-point sampling of previous study increased the \(\alpha - \beta\) static transition pressure \((P_{\text{st, static}})\) by 3 GPa, such that the LDA calculated \(P^\text{stat}_{\alpha \beta}\) for the \(\alpha - \beta\) transition becomes larger than \(P_{\text{st, static}}\) for the \(\beta - \gamma\) transition, which is erroneous. We calculated the free energy in the \(\alpha\) phase until the phase boundary converged. Fortunately only a negligible difference with respect to Li et al.'s (2007) results is found for VDOS and derivatives of the free energy at high \(P - T\). Comparison of thermodynamic properties obtained in this study (LDA), in Li et al. (2007) (LDA), and in experimental measurements is shown in Table B1. At high \(P - T\), this calculation in forsterite agrees very well with experimental measurements in volume, thermal expansion coefficient, bulk modulus, and heat capacity. Energy convergences with respect to k-point sampling in previous studies of \(\beta - \gamma\) phases (Yu and Wentzcovitch, 2006; Wu and Wentzcovitch, 2007) was confirmed. Since previous studies of \(\alpha - \beta - \gamma\) and MgSiO\(_3\) reported only the LDA results, we obtained also the GGA counterpart for each phase in this study. This allowed for a comparative study of phase transitions by the LDA and GGA functionals.

3. \(\alpha - \beta - \gamma\) phase boundaries

Shown in Fig. 1 are the calculated differences of static enthalpy versus pressure by the local density approximation (LDA, Ceperley and Alder, 1980) and the generalized gradient approximation (GGA, Perdew et al., 1996) functionals. The GGA transition pressures are \(- 6\) GPa higher than the LDA ones. Specifically, \(P_{\text{LDA}, \alpha \beta} = 6.5\) GPa, \(P_{\text{LDA}, \beta \gamma} = 12.6\) GPa, \(P_{\text{GGA}, \alpha \beta} = 9.6\) GPa, and \(P_{\text{GGA}, \beta \gamma} = 15.7\) GPa. This is a consequence of differences in the LDA and GGA functional forms (Asada and Terakura, 1982; Yu et al., 2007). The uncertainties in total energies cause uncertainties of \(- 0.1\) GPa in these transition pressures. A comparison of calculated results with calorimetric measurements (Akagi et al., 1984, 1989) of molar volume, enthalpy, and entropy changes across the \(\alpha - \beta\) and \(\beta - \gamma\) transitions is shown in Table 1. Overall GGA results compare more favorably with the data for the \(\alpha - \beta\) transition. For the \(\beta - \gamma\) transition GGA and LDA results compare equally well with the data. The relatively large experimental uncertainties and the non-systematic trends in these comparisons make it difficult to pin down the reason why the LDA and GGA phase boundaries bracket the experimental ones (see below).

Both \(\alpha - \beta\) and \(\beta - \gamma\) phase boundaries have positive Clapeyron slopes (CS). The Clapeyron equation \(\rho \frac{\partial P}{\partial T} = \frac{\partial S}{\partial V}\) states that if entropy decreases across a phase transition, i.e., \(\Delta S < 0\), then the phase boundary has a positive CS since \(\Delta V < 0\) for a pressure-induced transition. The decrease in entropy from \(\alpha\) to \(\beta\) to \(\gamma\) can be understood from changes in VDOS of the three phases. Within the QHA, entropy is given by

\[
S(V, T) = k_B \sum_{\mathbf{q} \lambda} \ln \left[\frac{\hbar \omega_\lambda(\mathbf{q}, V)/k_B T}{\exp(\hbar \omega_\lambda(\mathbf{q}, V)/k_B T) - 1} \right].
\]

\(S\) decreases with the overall increase in phonon frequencies or with an increase in the center of mass, \(\alpha_{\text{cm}}\), of the VDOS (Navrotsky, 1980).

![Fig. 1. Static enthalpy differences between forsterite (\(\alpha\)), wadsleyite (\(\beta\)), and ringwoodite (\(\gamma\)) MgSiO\(_3\) versus pressure calculated by the LDA and GGA.](image-url)
we estimated from the in situ volume changes for Mg$_2$SiO$_4$ at 15 GPa. The black dots denote ω_{exp} values, the average (center of mass) frequencies, which are 513, 518, and 523 cm$^{-1}$ for α, β, and γ phases. The decrease in entropy throughout this phase transition is primarily of MgO bond stretching modes and the highest frequencies are 513, 518, and 523 cm$^{-1}$ of the these distributions (Fig. 2). They are respectively 513, 518, and 523 cm$^{-1}$ for the α, β, and γ phases. The decrease in entropy throughout this phase sequence is related to this increase in ω_{exp}.

We proceed to derive the LDA and GGA phase boundaries. They are displayed in solid lines in Fig. 3(a) for the α–β and in 3(b) for the β–γ transition. For both transitions, experimentally determined phase boundaries are bracketed by the LDA and GGA results. The GGA boundaries are somewhat closer to the experimental boundaries than the LDA ones, in both cases. Similar results were observed in other calculations using the same pseudopotentials (Tsuchiya et al., 2004; Yu et al., 2007). Our calculated LDA (GGA) CSs are 2.7 (2.5) MPa/K and 3.6 (3.5) MPa/K for the α–β and β–γ transitions, respectively. Despite the uncertainties in the phase boundaries related to the exchange correlation functionals, we find CSs in quite good agreement with measured values — 1.8–4.0 MPa/K (α–β transition) and 4.1–6.9 MPa/K (β–γ transition) (Akaogi et al., 1989; Katsura and Ito, 1989; Morishima et al., 1994; Suzuki et al., 2000; Katsura et al., 2004; Inoue et al., 2006), and with previous quasi-harmonic calculations — 2.7 MPa/K (α–β transition) (Price et al., 1987; Chopelas, 1991). See Fig. 3 caption for more detailed citations.

Recent phase equilibria study on a homogeneous upper mantle aggregate (Stixrude and Lithgow-Bertelloni, 2005a) produced a CS consistent with that found by Morishima et al. (1994) (3.6±0.2 MPa/K). The difference between our calculation and theirs may reflect the intrinsic difference between the QHA free energy using the DFT calculated phonon DoS and the free energy derived from the effective Debye model and the Grüneisen approximation (Stixrude and Lithgow-Bertelloni, 2005b). Nevertheless, our CS might have been underestimated by use of the QHA. For instance, in forsterite anharmonic effects are well known (e.g., Gillet et al., 1991). This effect, not included in the QHA, could increase the CS and/or shift the phase boundary at high temperatures. Fig. 3 indicates that the regime of validity of the QHA, determined on the basis of the criterion requiring the second derivative of the thermal expansivity to vanish (Wentzcovitch et al., 2004), does not encompass the entire temperature range of experiments and anharmonicities could be the cause of the discrepancy between our results and experiments. However, the expected P–T conditions (the mantle geotherm Brown and Shankland, 1981) at the 410- and 520-km discontinuities fail marginally within the QHA regime of validity. The broadening of the QHA validity...
limit in Fig. 3 is caused by a numerical uncertainty related to the determination of \([\partial^2 E/\partial P^2]_{<\phi} < \varepsilon\), where \(\varepsilon = 10^{-12} \text{ K}^{-3}\).

We summarize in Fig. 4 the phase stability field of \(\alpha, \beta, \gamma \text{MgSiO}_4\) and \(\text{MgO} \text{ (periclase)} + \text{MgSiO}_3 \text{ (perovskite)}\) found by LDA and GGA. LDA gives a qualitatively correct sequence of phase transitions under pressure, but transition pressures are about 5–15 GPa smaller than the experimental values. In contrast, GGA phase boundaries seem to agree much better with experiments (data from Katsura and Ito, 1989; Ito and Takahashi, 1989), but still offer transition pressures ~ 3 GPa higher. This trend, valid at least for silicate minerals, should be kept in mind for future reference. Fig. 4 also shows the dissociation of wadsleyite and \(\text{MgO} \text{ (periclase)} + \text{MgSiO}_3 \text{ (perovskite)}\) found by \(2000 \text{ K}\) and 21.5 GPa. The CSs found for \(\beta\) and \(\gamma\) dissociation are ~ −1.7 and ~2.9 MPa/K (GGA), respectively. The former differs from the CS found by Stixrude and Bukowinski (1993) (~ −3.0 MPa/K). This difference may originate in the distinct phonon density of states used by these calculations. The calculated CS for the \(\gamma\) dissociation transition is consistent with experimental values by Ito and Takahashi (1989), Akao and Ito (1993), Irfune et al. (1998), Shim et al. (2001), and Chudinovskikh and Boehler (2001), i.e., ~2.9 to ~2.6 MPa/K, but differs from the more recent results, e.g., Katsura et al. (2003), Fei et al. (2004), Litasov et al. (2005), reporting smaller values, i.e., ~1.3 to ~0.4 MPa/K. We hope to document more phase boundaries with this type of calculation in the future to establish by systematic comparison with experiments the degree of reliability of this method.

Regarding the accuracy related to these phase boundary calculations, within the framework of LDA or GGA the estimated uncertainty in static transition pressure is ~0.6 GPa and uncertainty in the CS is ~0.3 MPa/K. The errors caused by pseudopotentials and by the finite difference method as used here should be small, which in some sense is demonstrated by the good agreement between experiments and calculations of the \(\alpha, \beta,\) and \(\gamma\)-\text{MgSiO}_4 phases’ properties. The error stemming from the use of the QHA has not been estimated. But we have been very stringent in determining the range of validity of the QHA. The error associated with the QHA should not invalidate our conclusions regarding density discontinuities (see next section), which is very robust, even though it might change the location of the phase boundaries and the CSs.

Previous studies of the thermodynamic properties of each one of these phases of \text{MgSiO}_4 (Yu and Wentzcovitch, 2006; Li et al., 2007; Wu and Wentzcovitch, 2007), \text{MgO} (Karki et al., 2000b), and \text{MgSiO}_3 (Karki et al., 2000a) have established that the LDA predicts much better structural properties, e.g., volume, bulk modulus, etc., than the GGA, even though the latter appears to offer somewhat better values for \(H, G,\) and \(P\) than the former (Fig. 1 and Table 1). Hence we will use the LDA to compute property changes across the GGA phase boundaries, unless otherwise specified.

4. Discontinuities across \(\alpha-\beta-\gamma\) phase transitions in \text{Mg}_2\text{SiO}_4 and in mantle aggregates

We define a property discontinuity across a phase transition as \(\Delta x/\Delta k_{\alpha-\beta}(\alpha-x, x, \beta, x, \gamma, x)\) with \(x\) being \(\rho, K_{\alpha},\) or \(V_{\alpha}\) (\(V_{\alpha} = \sqrt{K_{\alpha}/\rho}\)). Here \(A\) denotes the low-pressure phase \(\alpha\) (\(\beta\)), and \(B\) denotes the high-pressure phase \(\beta\) (\(\gamma\)). The calculated \(\Delta x\) using the LDA (GGA) functional along the GGA phase boundaries (Fig. 3) provides the lower (upper) bound of the green shaded areas in Fig. 5, while the middle solid line represents an average of the two bounds. For the \(\alpha-\beta\) transition we find \(\Delta K_{\beta}/V_{\beta} = 7.6\%\), and \(\Delta K_{s}/K_{\beta} = 22\%\) at ~1500 K. For the \(\beta-\gamma\) transition we find \(\Delta P/\rho = 1.8\%, \Delta V_{\gamma}/V_{\alpha} = 2.7\%,\) and \(\Delta K_{\gamma}/K_{\beta} = 7.2\%\) at ~1700 K (Table 2 and Fig. 5). Property discontinuities produced by the \(\beta-\gamma\) transition are considerably smaller than those produced by the \(\alpha-\beta\) transition. One notable feature shown in Table 2 is that \(\mu_{\text{Sl}}<\text{PREM}\) and \(K_{\text{Sl-MgSiO}_4, \text{PREM}}\) at \(P, T\) conditions between 410- and 520-km depth. This difference is expected to be compensated when pyroxene/garnet/(Ca–perovskite) system is added to the aggregate which has not been included at this stage.

As is well known in the transition zone, pyroxenes, garnets, and Ca-perovskite (Ca-pv) coexist with the \text{MgSiO}_4 polymorphs. These phases also undergo phase transitions (Ringwood, 1975) but they seem to occur within much wider pressure ranges (e.g., Gasparik, 1990) compared to the transitions we are addressing, even in the presence of the binary loops caused by the (Mg,Fe) solid solutions in the \(\alpha, \beta,\) and \(\gamma\) phases (Katsura and Ito, 1989). These wide transitions alter substantially density and velocity gradients in Earth’s transition zone, but whether or not they cause any sharp discontinuity is still not completely clear (Ito and Stixrude, 1992). Here we calculate the density discontinuities produced in mantle aggregates with variable olivine volume fractions under the assumption that sharp phase transitions occur only in the olivine system. We compare these density discontinuities with the seismically observed values at 410-km and 520-km depth despite the fact that seismic data at 520-km depth are more controversial than those at 410-km depth. We then check the consistency of the pyrolite compositional model and of the presumed cause of these mantle discontinuities.
The discontinuity is plotted against Mg$_2$SiO$_4$ volume fraction, different temperatures along the phase boundaries is shown in Fig. 6.

4.1. 410-km density discontinuity and other alloy elements present in the aggregate will not alter the Therefore in general, requires simultaneous changes in the coexisting phases (unless the transition zone would produce

\[\Delta \rho = \text{Sinogeikin et al. (2003)} \].

\[(g/cm^3) \]

\[\text{Upper 410-km (} \alpha \text{)} = 173.5 \]

\[\text{Lower 410-km (} \beta \text{)} = 189.9 \]

\[\text{Upper 520-km (} \beta \text{)} = 218.1 \]

\[\text{Lower 520-km (} \gamma \text{)} = 81.3 \]

\[\text{Upper 520-km (} \beta \text{)} = 79.1 \]

\[\text{Lower 520-km (} \beta \text{)} = 2.7% \]

\[\text{Lower 520-km (} \gamma \text{)} = 1.3–2.1% (b, seismic) \]

\[\Delta \rho = \text{Flanagan (1999), (b)} = \text{Lawrence and Shearer (2006), (c)} = \text{Rigden et al. (1991), and (d)} = \text{Singelick et al. (2003).} \]

Under the above assumptions, the relative density change at 410-km (520-km) can be expressed as (see Appendix A)

\[\Delta \rho = \frac{\rho_{B, \text{others}} - \rho_{A, \text{others}}}{\rho_{B, \text{others}} + \rho_{A, \text{others}}} \]

Here \(\Delta \rho = \rho_{B, \text{others}} - \rho_{A, \text{others}} \) with \(\rho_{A, \text{others}} \) and \(\rho_{B, \text{others}} \) denote the densities of phase A and B, respectively. The high-pressure phase \(\beta \) (\(\gamma \)) at 410-km (520-km). \(\Delta \rho = \frac{\rho_{B, \text{others}} - \rho_{A, \text{others}}}{\rho_{B, \text{others}} + \rho_{A, \text{others}}} \) \] with \(\rho_{A, \text{others}} \) and \(\rho_{B, \text{others}} \) denotes the densities of phase A and B, respectively.

4.1. 410-km density discontinuity

The density discontinuity produced by the \(\alpha \)-\(\beta \) transition at three different temperatures along the phase boundaries is shown in Fig. 6. The discontinuity is plotted against Mg$_2$SiO$_4$ volume fraction, \(y \). The lower (upper) bounds of the shaded area in Fig. 6 correspond to density discontinuities calculated at 1300, 1500, and 1700 K along the GGA (LDA) boundary, while the middle dashed line represents \(\Delta \rho \) calculated at 1500 K on the experimental boundary (Katsura and Ito, 1989). Based on this calculation, the 5% density increase, given by PREM, cannot be produced exclusively by the \(\alpha \)-\(\beta \) transition, but requires simultaneous changes in the coexisting phases (unless the volume fraction of Mg$_2$SiO$_4$ is ~90%). However, the 0.2–4% density increase estimated by a seismic impedance study (Shearer and Flanagan, 1999) is fully consistent with the discontinuity predicted by Eq. (3) in a pyrolyte-type model. For instance ~60 vol.% Mg$_2$SiO$_4$ in the transition zone would produce ~3.0% density increase (GGA boundary), which is in good agreement with the 2.9% estimate (Gaherty et al., 1999) for a pyrolyte compositional model.

Nevertheless, because of the large uncertainties in \(\Delta \rho \) derived from the seismic impedance study, this good agreement between predicted and observed density jump may be marginal. In the upper mantle pyroxene coexists with olivine and dissolves extensively into garnet over a large pressure range (~7–15 GPa) at ~1200 °C. A drastic change in the proportion of pyroxene to garnet occurs near the end of the transformation (Ringwood, 1975; Akaogi and Akimoto, 1979; Irfune, 1987). This can produce a high velocity gradient between 300 and 460-km depth as pointed out by Ringwood (1975). But how influential Al and other elements, such as Ca and Fe, are in determining phase equilibrium in the pyrolyte/garnet/Ca-pv system (solid-solid solution), e.g. determining the sharpness of the transition (Stixrude, 1997), is still unclear (e.g. Weidner and Wang, 2000). Furthermore whether or not this pyroxene-garnet transformation coincides with the \(\alpha \)-\(\beta \) transition in Earth to produce 410-km discontinuity is an unresolved issue. Our understanding of the 410-km discontinuity will not be complete until the effects of Al and other elements such as Ca and Fe on the phase equilibrium are understood. We expect first principles based phase equilibrium calculations in the future will be able to shed light on this problem.

4.2. 520-km density discontinuity

During the past 20 yr or so, much knowledge has been accumulated about phase transitions and thermodynamic properties of transition zone minerals (see references in Stixrude and Lithgow-Bertelloni, 2005b; Li and Liebermann, 2007) and their aggregates (Ito and Stixrude, 1992; Stixrude and Lithgow-Bertelloni, 2005a). Density and velocity gradients calculated for an aggregate with pyrolyte-type composition showed good agreement with seismic data (Ito and Stixrude, 1992; Li and Liebermann, 2007). It has been speculated that possible causes of the 520-km discontinuity comprise the \(\beta \)-\(\gamma \) transition in Mg$_2$SiO$_4$, clinopyroxene+majorite garnet to majorite garnet+Ca-pv transformation, and compositional change or layer (Agee, 1998). Lack of precise high \(P-T \) thermodynamic data in these key transition zone minerals, as well as accurate knowledge of the Ca content near 520-km depth and its partitioning in majorite garnet, rendered these hypotheses unclear, albeit much effort has been devoted to this issue (e.g., Duffy and Anderson, 1989; Gasparik, 1990; Reavenaugh and Jordan, 1991). Next we show evidence that the \(\beta \)-\(\gamma \)
transition in Mg$_2$SiO$_4$ is unable to produce the 520-km discontinuity, thus emphasizing the importance of phase transitions in the pyroxene/garnet/Ca-pv system.

Fig. 7 shows the density discontinuity produced by the β→γ transition as a function of Mg$_2$SiO$_4$ volume fraction at 1500, 1700, and 1900 K along the GGA and LDA boundaries (Fig. 3(b)). $\Delta \rho/\rho$ at 1700 K on the experimental boundary (Katsura and Ito, 1989) is also calculated and shown by a dashed line in the middle of the shaded area in Fig. 7. One should note that $\Delta \rho/\rho$ calculated on the LDA boundary should be less accurate, because the LDA substantially underestimates P_α by ~4 GPa (Fig. 3(b)). An aggregate with pyrolite composition, e.g., Mg$_2$SiO$_4$, would produce only 1% density discontinuity (GGA boundary). The 1.3–2.9% density jump at 520-km depth inferred from an impedance analysis study by Lawrence and Shearer (2006) cannot be explained by the β→γ transition alone in a pyrolite aggregate. This discontinuity would require at least 70 vol.% of Mg$_2$SiO$_4$ in the aggregate according to the calculated $\Delta \rho/\rho$ along the GGA or the experimental boundary (Fig. 7). This strongly suggests that the 520-km discontinuity needs to have contributions from phase transitions in the pyroxene/garnet/Ca-pv system.

The presence of iron and hydrogen in the aggregate is expected to have only a minor effect on the density discontinuity, although their effects on phase boundaries are more prominent (e.g., Ito and Takahashi, 1989; Matsuzaka et al., 2000; Ohtani and Litosov, 2006). If inverse spinel (O’Neill and Navrotsky, 1983) does coexist with normal spinel (γ phase), then the relative density discontinuity caused by the β→γ transition will decrease even further, because of the larger inverse spinel unit cell (Kiefer et al., 1999).

There is clear evidence that Ca-pv exsolves from garnet at ~1500 °C and 17–18 GPa (Casparik, 1994), which can contribute to the density and velocity discontinuities at 520-km depth (Weidner and Wang, 2000). Our results verify arguments that it is indispensable to include the important impact of pyroxene/garnet/Ca-pv system upon the 520-km discontinuity, which presumably will change the width of this discontinuity also.

Recently a mineral physics interpretation (Saikia et al., 2008) of the 520-km discontinuity splitting (into 500- and 560-km) (Deuss and Woodhouse, 2001) has been proposed. It was suggested that the 500-km discontinuity should be assigned to the β→γ transition and the deeper discontinuity to the Ca-pv exsolution from garnet. Based on a phase equilibrium study combining mineral physics data, the authors also estimated the density discontinuity caused by the β→γ transition in fertile peridotite to be ~1.7%. This is in line with the study by Sinogeikin et al. (2003), who reported the density increase in (Mg$_{0.88}$Fe$_{0.12}$)$_2$SiO$_4$ caused by β→γ transition to be 2.5%. Our calculated density discontinuity caused by the β→γ transition in pure Mg$_2$SiO$_4$ is 1.8% and our estimated density increase in a typical mantle aggregate (with 60 vol.% Mg$_2$SiO$_4$) is only ~1%. One should note that the experimental density at high P–T (e.g., Sinogeikin et al., 2003) used by Saikia et al. (2008) was extrapolated using a third-order Birch–Murnaghan equation of state (Birch, 1952). This extrapolation depends on both $\partial M/\partial P$, which was experimentally determined, and $\partial^2 M/\partial P^2$, which was not but was approximated using $g^{\beta\gamma}=\partial \ln \left(\frac{T}{\rho}\right) / \partial P = -\frac{\partial^2 M/\partial P^2}{\partial^2 K/\partial P^2}$, with M being bulk or shear moduli (K_0 or G). Our numerical calculation shows that $g^{\beta\gamma}$ is material dependent, e.g., at 0 GPa $g^{\beta\gamma}=-0.7$, -1.2, and -0.5 for α-, β-, and γ-Mg$_2$SiO$_4$, respectively. Therefore it is not at all surprising that experimental extrapolations differ from our DFT results. We feel that the DFT based density increase for the β→γ transition is more reliable than experimentally extrapolated values.

Although calculations of shear moduli and shear velocities are also desirable for completeness, comparisons between computed and observed jumps in the mantle are unlikely to change the present conclusions. Shear moduli and shear velocities should be much more sensitive to temperature, pressure, and probably composition too. The uncertainty in shear velocity will probably be too large to allow one to extract clearer conclusions. Take, for example, the case of the pv–ppv transition (see Wentzcovitch et al., 2006, Fig. 1c). Density and bulk velocity jumps, instead, are much more insensitive, as shown in Fig. 5. Therefore, they are more suitable quantities to investigate if one wants to infer the source of discontinuities. These jumps are some of the most robust results in this paper precisely because they are quite insensitive to pressure and temperature.

5. Conclusions and summary

Phase boundaries between α→β→γ Mg$_2$SiO$_4$ have been computed from first principles. Uncertainties in the location of these boundaries related to the choice of exchange correlation functional are relatively large. However, the LDA and GGA phase boundaries bracket the experimental ones as found in previous computations of the post-spinel (psp) (Yu et al., 2007) and post-perovskite (ppv) transitions (Tsuchiya et al., 2004). The calculated CSs are in good agreement with experimentally determined values as found earlier for the psp transition and presumably also for the ppv transition. Despite the uncertainty in the phase boundaries, the predicted jumps in ρ, K_0, and V_0 have relatively small uncertainties and useful accuracy.

We have estimated the density increases caused by the α→β and β→γ transitions in an aggregate with variable volume fraction of Mg$_2$SiO$_4$ assuming that phase transitions in coexisting phases are not sharp and occur over a much wider pressure range. The density jump at 410-km depth marking the upper mantle transition zone boundary can be reproduced by the density discontinuity caused by the α→β transition in an aggregate with pyrolite composition. However, the large uncertainties in the seismic data do not exclude the possibility of accompanying changes in the pyroxene/garnet/Ca-pv system.

The density discontinuity produced by the β→γ transition is relatively small and at least 70 vol.% of Mg$_2$SiO$_4$ would be required to reproduce the magnitude of the density discontinuity at 520-km. This strongly suggests that it is necessary to consider contributions from other phase transitions, in addition to the β→γ transition, to understand the nature of the broad (10–50 km width, i.e., 0.4–2 GPa) seismic reflector at 520 km depth (Shearer, 2000). There remain important open questions such as how much other transformations in the pyroxene/garnet/Ca-pv system contribute to the 520-km discontinuity (Weidner and Wang, 2000), and how exactly water partitioning in α→β→γ Mg$_2$SiO$_4$ can broaden the 410- and 520-km discontinuities. Further thermodynamic studies of
Appendix A. Density discontinuity due to one phase transformation in an aggregate

Consider an aggregate of phase A, B, C, etc. (Fig. 8). If only phase A undergoes a transition to A′ at (P0, T0), then the aggregate density changes by

$$\Delta \rho = \frac{\rho_{A' \text{- others}} - \rho_{A \text{- others}}}{(\rho_{A' \text{- others}} + \rho_{A \text{- others}})/2}. \tag{A.1}$$

where “others” = B + C + etc. If m is the total mass of the aggregate and V is volume, then

$$\Delta \rho = \frac{m}{V} \left(\frac{\rho_{A' \text{- others}} - \rho_{A \text{- others}}}{\rho_{A' \text{- others}} + \rho_{A \text{- others}}} \right). \tag{A.2}$$

Let $y = V_{A'}/(V_{A} + V_{\text{others}})$ and $\theta = V_{A'}/V_{A}$, then

$$\Delta \rho = \frac{2y}{\pi r^2}, \tag{A.3}$$

which is Eq. (3) in Section 4.

Appendix B. Thermodynamics of forsterite Mg2SiO4

Table B.1

<table>
<thead>
<tr>
<th>V (Å³)</th>
<th>K_v (GPa)</th>
<th>dK_v/dP</th>
<th>α (10⁻⁵ K⁻¹)</th>
<th>C (J/(mol·K))</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This worka</td>
<td>290.3</td>
<td>127.4</td>
<td>4.3</td>
<td>2.66</td>
<td>118.5</td>
</tr>
<tr>
<td>Li et al. (2007)a</td>
<td>289.5</td>
<td>127.6</td>
<td>4.2</td>
<td>2.64</td>
<td>119.3</td>
</tr>
<tr>
<td>This work</td>
<td>285.7b</td>
<td>193.9b</td>
<td>-</td>
<td>5.10b</td>
<td>195.1b</td>
</tr>
<tr>
<td>Exp</td>
<td>285.25(25)c</td>
<td>197.54±2.91c</td>
<td>-</td>
<td>4.72c</td>
<td>199.6c</td>
</tr>
</tbody>
</table>

a=300 K, 0 GPa, b=1371.2 K, 6.6 GPa), c=300 K, 16.2 GPa, d=(2000 K, 0 GPa), expb=Meng et al. (1993), expc=Gaia et al. (1996), expd=Gillet et al. (1991).

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.epsl.2008.06.023.

References

